Mass Flow and Accretion through gaps in Accretion Discs
نویسنده
چکیده
We study the structure and dynamics of the gap created by a protoplanet in an accretion disc. The hydrodynamic equations for a flat, two-dimensional, non-selfgravitating protostellar accretion disc with an embedded, Jupiter sized protoplanet on a circular orbit are solved. To simulate possible accretion of mass onto the protoplanet we continually remove mass from the interior of the planet’s Roche lobe which is monitored. Firstly, it is shown that consistent results independent on numerical issues (such as boundary or initial conditions, artificial viscosity or resolution) can be obtained. Then, a detailed parameter study delineates the influence of the disc viscosity and pressure on the magnitude of the accretion rate. We find that, even after the formation of a gap in the disc, the planet is still able to accrete more mass from the disc. This accretion occurs from regions of the disc which are radially exterior and interior to the planet’s orbital radius. The rate depends on the magnitude of the viscosity and vertical thickness of the disc. For a disc viscosity α = 10 and vertical thicknessH/r = 0.05 we estimate the time scale for the accumulation of one Jupiter mass to be of order hundred thousand years. For a larger(smaller) viscosity and disc thickness this accretion rate is increasing(decreasing). For a very small viscosity α< ∼ 5 10 the mass accretion rate through the gap onto the planet is markedly reduced, and the corresponding accretion time scale becomes larger than the viscous evolution time of the disc.
منابع مشابه
Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars
Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...
متن کاملA Simplified Solution for Advection Dominated Accretion Flows with Outflow
The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...
متن کاملThe Role of Thermal Conduction in Accretion Disks with Outflows
In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...
متن کاملThe study of Hydrodynamical wind on the observational properties of magnetized accretion flow with thermal conduction
متن کامل
General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow
Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent an...
متن کامل